Le premier foiler autonome monté sur 2 T-foils et développé par des étudiants de l’EPFL

Par le « Team HydroContest EPFL 2015-2016 »

Bifoiler en cours de test - photo Adrian Breitenmoser
Bifoiler en cours de test – photo Adrian Breitenmoser

Le prototype construit par les étudiants de l’EPFL a participé à l’HydroContest, un concours étudiant dédié à l’efficience énergétique dans le domaine maritime. Un moteur et une batterie sont imposés aux équipes. Les dimensions des bateaux sont également contraintes, ceux-ci devant rentrer dans une boite de 2.5×2.5x2m et transporter 20kg de lest.  La propulsion est donc identique pour toutes les équipes mais le design est libre.

1 – Un design efficient mais instable par nature

Afin de réduire la trainée, l’équipe s’inspire du Moth Foiler et fait le choix d’un bateau volant sur deux T foils avec une régulation électronique de l’altitude et du roulis (gite).

Le bateau est composé de seulement 2 appendices - photo Adrian Breitenmoser
Le bateau est composé de seulement 2 appendices – photo Adrian Breitenmoser

Cette configuration est instable, comment parvenir à contrôler l’assiette du bateau ?

1.1 – Régulation du roulis par les flaps avant

Sur un Moth Foiler, c’est le barreur qui régule l’assiette du bateau en déplaçant sa masse. Sur un bateau motorisé sans pilote, cette solution n’est pas envisageable. L’équipe se procure des foils de Moth (Mach2) et sectionne le foil avant afin de rendre indépendant les flaps bâbord et tribord. Les flaps sont actués depuis le pont par une tringle reliés à des servo-moteurs.

Séparation des flaps au centre du foil avant – photo Adrian Breitenmoser
Séparation des flaps au centre du foil avant – photo Adrian Breitenmoser

1.2 – Régulation électronique du Roulis

Les drones possèdent un régulateur intégré qui rend le vol stable malgré les perturbations extérieures. Notre bateau rencontre la même problématique : voler alors que le vent, les vagues et les forces inertielles dues au pilotage le déstabilisent.

L’équipe choisit d’utiliser un Pixhawk. Il s’agit d’un contrôleur de drone open-source comprenant des senseurs inertiels, des gyroscopes, et une interface avec le GPS.

Ainsi, le contrôleur détecte la gîte et corrige l’erreur en agissant sur les flaps à une vitesse qui dépend du degré de gite.

Le pilote explique : « Pour prendre des virages j’ordonne au bateau de prendre entre 0 et 10° de gite, alors qu’en ligne droite, il maintient automatiquement son assiette à plat ».

1.3 – Régulation électronique de l’altitude

Palpeur électronique à faible inertie - photo Adrian Breitenmoser
Palpeur électronique à faible inertie – photo Adrian Breitenmoser

Le capteur d’altitude est basé sur le même principe que celui des Moths. Un palpeur est situé à l’avant du bateau, mais ici il est électronique et non mécanique.

Le palpeur est relié à un encodeur rotatif qui détecte les variations d’angle avec une précision de 0.3°. En fonction de l’altitude de vol désirée, le contrôleur va augmenter ou diminuer l’angle d’incidence (et donc la portance) des deux flaps simultanément en plus de corriger la gite.

Une régulation électronique a l’avantage d’être bien plus réactive : la position des servomoteurs est actualisée 100 fois par seconde. De plus, l’utilisation d’un régulateur PID permet de tenir compte du « présent », du « futur » ainsi que du « passé ». C’est plus performant qu’un système mécanique qui, lui, ne prend en compte que l’erreur « présente ».

Cela nécessite évidemment de trouver les bons paramètres afin que l’erreur entre la consigne et le comportement du bateau soit la plus faible possible. Ci-dessous un GIF présentant un planté durant la phase de « tuning » (recherche) des bons paramètres (aussi visible ICI) :

giphy-downsized-large

2 – Electronique et pilotage

Le bateau est propulsé par un moteur, une batterie et un variateur électronique fournis par l’organisation de la course, il développe une puissance théorique de 1.5 kW. Les vitesses maximales obtenues sont de 15 nœuds, pour un poids total de 45Kg.

A cette vitesse, le pilotage nécessite d’être fin sur les gaz. Pour mieux visualiser le comportement du bateau, l’équipe a installé une caméra sur le pont. Elle permet de piloter à distance avec une vue à la première personne.

L'écran qui permet le pilotage à la première personne - photo Adrian Breitenmoser
L’écran qui permet le pilotage à la première personne – photo Adrian Breitenmoser

3 – Fabrication

L’objectif : Fabriquer un bateau léger, rapidement, en minimisant l’impact environnemental

Différents cas de charge sont étudiés : crash en planté, crash latéral et diverses erreurs de pilotage sont simulés. Ces simulations donnent les contraintes que le bateau devra supporter. Si celles-ci sont trop importantes, l’arrangement des plis de carbone (stacking) est modifié et une nouvelle simulation est lancée.

Cas de charge : Crash latéral - simulation Abaqus par Xavier Lepercq
Cas de charge : Crash latéral – simulation Abaqus par Xavier Lepercq
Estimation de la masse de différentes combinaisons - Maxime Burgonse
Estimation de la masse de différentes combinaisons – Maxime Burgonse

L’équipe choisit la combinaison la plus légère et utilise alors du pré-imprégné fourni par NTPT, des powerRibs  (un maillage de fibre de lin tressées) fournies par Bcomp.

De plus, l’équipe étudie l’impact énergétique des matériaux choisis et montre qu’il est faible comparé à d’autres solutions pour ce cas de charge.

Impact énergétique de chaque solution - Maxime Burguonse
Impact énergétique de chaque solution – Maxime Burguonse
Coque avant cuisson avec les PowerRibs - photo Adrian Breitenmoser
Coque avant cuisson avec les PowerRibs – photo Adrian Breitenmoser

Cette vidéo présente les étapes de la construction du bateau.

4 – Le futur

L’HydroContest a lieu chaque année et une nouvelle équipe travaille déjà pour participer à la prochaine édition. Nous vous invitons à suivre l’avancement de la préparation du bateau pour la campagne2017 sur la page Facebook de l’équipe ou sur Twitter.

Note du « metteur en page » 15/11/16

Vous avez aimé l’article « Question/réponse 6 : Possible modélisation de la ventilation » de Robinson Bassy et Grégoire Archambeaud, il y a un complément d’info…

 

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Question/réponse 6 : Possible modélisation de la ventilation

Par Robinson Bassy et Grégoire Archambeaud

schema-ventilation-foil-en-v-f-monsonnec-02-2016

Nous sommes deux étudiants en deuxième année de prépa scientifique (option PC). Nous réalisons un TIPE autour de la problématique suivante : Comment améliorer les performances d’un bateau à foil en limitant le phénomène de ventilation grâce à des fences ?.

Notre démarche scientifique serait la suivante

1) Modéliser informatiquement deux profils de foils, un avec fences et l’autre sans et modéliser leur performances grâce à Héliciel par exemple.

2) Imprimer ces profils par imprimante 3D

3) Les tester en canal hydraulique, pour essayer de mettre en évidence l’apport des fences point de vue ventilation, notamment par rapport à la vitesse d’apparition de la bulle d’air, qui devrait être plus élevée pour le foil avec fences. Il semble difficile d’installer des capteurs de force en canal hydraulique et donc de tracer deux courbes de finesse, donc l’expérience risque d’être simplement basée sur cette vitesse d’apparition. Notre but est de valider (ou pas) la modélisation théorique informatique.

Nous nous inspirons grandement de cette vidéo :

Les problèmes que nous rencontrons sont les suivants

  • Nous n’arrivons pas à savoir si des logiciels tels que Héliciel prennent en compte le phénomène de ventilation, et s’ils peuvent comme nous l’espérons nous fournir à l’avance une vitesse d’apparition du phénomène ou au moins son impact sur la portance. Il faut bien sûr que nous en soyons sûrs avant de demander à nos profs d’acheter le logiciel en question. Qu’en pensez-vous ?
  • Nous n’avons quasiment aucune info sur la faisabilité de nos expériences en canal hydraulique. En effet, nous ne savons pas à quelle vitesse va apparaître le phénomène et donc si le canal que nous comptons utiliser (celui de l’Ecole Centrale de Lyon) pourra atteindre des vitesses suffisantes. Avant de continuer notre projet, il nous faut donc impérativement savoir si dans l’idée notre expérience est « plausible » et réalisable avec un foil « imprimé » peu résistant. Auriez-vous connaissance d’éléments théoriques simples, d’une modélisation nous permettant d’approximer cette vitesse ?
  • Nous n’arrivons pas à déterminer de manière certaine si le phénomène sera plus intéressant à observer sur un foil en V ou un en T, même si nous penchons fortement pour le foil en V, car la surface d’apparition de la bulle serait plus grande. Qu’en pensez-vous ?

D’avance merci pour vos conseils !

« Complément d’info. et nouvelles questions » 15/11/16

Il y a quelques jours nous avons effectué nos premiers tests en canal hydraulique, avec un foil en V, à peu près à 45° (angle diédral) et une vitesse d’écoulement de 1m/s. Nous avons, pour un certain angle d’incidence, observé clairement la création d’une bulle d’air le long du profil (nous pouvions presque glisser notre doigt sans être mouillé jusqu’à une profondeur importante). Pourtant nous n’arrivons pas à savoir si la bulle d’air est de la ventilation ou simplement un effet du décrochage. En effet, elle se crée à un angle d’incidence important et l’eau semble « sauter » au dessus de la paroi au lieu de s’y coller. De plus, les forces exercées par le foil semblent changer brusquement d’orientation à ce moment précis, comme lors du décrochage. Il s’avère donc que nous avons un crucial problème d’interprétation : peut-on parler de « ventilation dûe au décrochage » ? Le décrochage est-il induit et/ou aggravé par la ventilation ou est-ce l’inverse ?

Il semble en effet important de savoir si il faut distinguer ce type de ventilation d’une ventilation naturelle, apparaissant sans décrochage simplement à cause d’une dépression suffisante sur l’extrados. C’est dans tout les cas une piste intéressante pour nous d’étudier le lien entre les deux phénomènes.

Merci pour votre aide

Robinson Bassy et Grégoire Archambeaud

Tests en canal hydraulique - Robinson Bassy et Grégoire Archambeaud 11-2016
Tests en canal hydraulique – Robinson Bassy et Grégoire Archambeaud 11-2016

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

Enregistrer

NY – Les sables, « good vibes » ?

Par Olivier Verschoore

Vibrations et confort

Que faire au Sables d’Olonne une semaine pluvieuse du mois de juin… accueillir les Imoca à foil ou à dérives de la première New York – Vendée évidemment !

Où est passée la foule immense des Vendée Globe ? Pour l’arrivée de cette nouvelle course il n’y a presque personne. Là où, dans 5 mois, 1 million de passionnés se presseront et jouerons des coudes pour avoir un autographe, la semaine dernière on pouvait tranquillement promener son Bouvier Bernois sur le ponton, discuter avec les équipes et les skippers, prendre son temps. Les enfants ont eu leur photo souvenir, un skipper serait même descendu pour donner une caresse au chien entre deux interviews.  Et c’est tout ? Ca dépend, si le badaud se trouve être un lecteur assidu de Foilers !, qu’il rêve d’avoir son Williwaw pour foiler tranquillement au milieu des océans, non ce n’est pas tout : on a pu « parler foil ».

Maitre coq avec Jérémy Beyou, Gitana 15 avec Sebastien Josse, Hugo Boss avec Alex Thomson, le podium de cette transat et monopolisé par les Imoca à foils.

Jérémy Beyou le vainqueur, avec une traversée en 9 jours et 17h, a fait adapter son bateau pour y loger des foils dernièrement. Il explique que sans les foils le bateau est lourdaud. Avec les foils le bateau devient très réactif. Il explique que lorsque le bateau commence à s’arracher à l’eau, l’accélération est franche, il devient même émouvant en répétant en boucle « ça accélère, ça accélère, on ne sait pas quand ça va s’arrêter ». Par contre les décélérations sont aussi brutales que les accélérations sont franches, avec une coque planante sans redans je dirais : « normal ». Les foils de Maitre coq sont équipés d’un aileron perpendiculaire à l’intrado au niveau de sa partie la plus courbe. Je ne me l’explique pas.

Sébastien Josse développe plus les aspects stabilité, confort et sécurité.

Les Imoca ne volent pas encore complètement. Ils sont soulevés un peu en avant du centre de gravité et l’arrière du bateau est au planning. C’est une configuration stable qui ne nécessite pas de modification de safran. Avec un plan porteur horizontal intégré le comportement de ce dernier en cas de choc serait modifié, on aurait alors peut-être à nouveau des cas de perte de safran.

Le problème dans cette configuration c’est le manque total de confort. Le bateau est soulevé sur l’avant et le clapot rencontre la carène sur une zone pratiquement plate optimisée pour le planning sans foil. Pas de V profond pour fendre l’eau, chaque vaguelette vient claquer sur la peau de carbone du tambour Imoca.

Pour achever le marin, les foils transmettent des vibrations très aiguës dans la caisse de résonance qui sert d’abri au marin. Morgan Lagravière sur Safran s’est particulièrement plaint de ce bruit qui rend fou. Tous les skippers portent des casques antibruit pour supporter ce sifflement.

Pour la sécurité, Sébastien pragmatique explique que les foils ont la même surface frontale projetée que les dérives. Le risque de collision est donc identique. Safran de Morgan Lagravière et Virbac St Michel de JP Dick ont explosé leurs foils, Tanguy Delamotte a fendu une dérive. Ce risque est donc similaire… à la vitesse prés : un choc à 15 nœuds ou à 25 nœuds en termes d’énergie à dissiper c’est pratiquement un rapport de 1 à 3. Le carbone n’ayant pas bâti sa réputation sur la résistance au choc, il se solde immanquablement par une amputation à la jointure.

Chirurgie suite à l’amputation sur Safran - photo O. Verschoore 06/2016
Chirurgie suite à l’amputation sur Safran – photo O. Verschoore 06/2016
Chirurgie suite à l’amputation sur Safran - photo O. Verschoore 06/2016
Chirurgie suite à l’amputation sur Safran – photo O. Verschoore 06/2016
Réparation à la truelle sur Virbac - photo O. Verschoore 06/2016
Réparation à la truelle sur Virbac – photo O. Verschoore 06/2016

 

Réparation à la truelle sur Virbac - photo O. Verschoore 06/2016
Réparation à la truelle sur Virbac – photo O. Verschoore 06/2016

Les foils de gitana ont un profil à peu près constant jusqu’à la courbure max du foil (pour pouvoir coulisser dans le puit) puis la corde devient franchement plus importante et s’affine régulièrement jusqu’au bout de foil.

Info Gitana : Le mod 70 qu’ils ont fait voler en mars est vendu afin de pouvoir faire un projet maxi « a foil ».

Alex Thomson sur Hugo Boss a fait un début de course sur les chapeaux de foils raflant le record de distance sur 24h. Malgré 4 chocs, avec probablement des poissons lune, pas d’avarie visible. Flegmatique et sympathique Sir Thomson tout sourire est juste content de ses foils ! Son bateau dont le triangle avant est batmaniesque a des foils avec de fines fences en carbone collées sur les deux tiers avant du profil. Ces dernières empêchent probablement de rentrer complètement le foil dans son puit. L’extrémité du foil est coupée net ce qui permet de bien voir le profil choisi. Des marques sur le foil sont visibles depuis le cockpit pour mesurer son immersion, l’extrémité n’est pas traitée car elle est sensée toujours être émergée.

Hugo Boss - photo O. Verschoore 06/2016
Hugo Boss – photo O. Verschoore 06/2016
Hugo Boss - photo O. Verschoore 06/2016
Hugo Boss – photo O. Verschoore 06/2016

Ces marins, et la moitié de la flotte Imoca, partiront dans 5 mois avec leurs foils de record de vitesse et de torture.

Comment faire pour diminuer ces contraintes ?

Sébastien explique clairement que « l’architecture des bateaux va changer : ils seront plus étroit et rond », le tambour de carbone devrait donc devenir de l’histoire ancienne dès qu’un architecte osera revoir en profondeur la carène. De même source aujourd’hui c’est l’équipe d’Alex qui est allée le plus loin dans le concept, son bateau est plus étroit alors que la largeur sur les Imoca est gage de puissance. La décision tardive de Jérémy lui aura été profitable, son bateau est « d’ancienne génération », il a donc pu conserver des ballasts plus volumineux que les nouveaux bateaux. Avec l’adjonction d’un foil qui déplace sensiblement la poussée verticale habituellement assurée par la carène : le couple de redressement augmente, la puissance potentielle augmente.

Que faire pour les vibrations et les sifflements des foils? Cette question je ne l’ai malheureusement pas posé aux principaux concernés. Votre apprenti reporter n’a pas de carte de presse et parfois la timidité prend le pas sur l’opportunisme. Je vais donc répondre avec mes moyens et les informations trouvées sur le net.

J’aurai bien aimé que tout ce boucan soit dû à la cavitation. Les bateaux ont fait la traversé en 9 jours, pas en 4 jours, même à 25 nœuds difficile de penser qu’il s’agisse de cavitation. Donc la cavitation en Imoca ça viendra mais pour nos new-yorkais il s’agit d’autre chose.

Ce bruit les adeptes de catamaran type F18 le connaissent. Etudiant je l’adorait. Il voulait dire : Oliv tu fonces, ton bateau te remercie en chantant. Pas sûr que j’apprécierai cette chanson 24h/24 pendant 3 mois. Les surfeurs connaissent aussi ce sifflement. Ils le suppriment en ponçant le bord de fuite.

Ce bruit serait dû à l’instabilité du vortex sur le bord de fuite. Alternant rapidement de l’extrado à l’intrado ce dernier fait osciller la dérive ou le foil comme vous pouvez le voir sur cette vidéo.

Comme toute structure le foil possède une fréquence propre, si l’oscillation s’en approche la résonance augmente considérablement l’amplitude. Si cette fréquence propre se situe dans l’audible le concert peut commencer. Sur la vidéo le bord de fuite est biseauté de manière asymétrique pour réduire les vibrations.

Il s’agit probablement de la cause racine de ce bruit.

Le fait d’avoir des foils courbés ou en L avec des profils évolutifs risque de ne pas simplifier l’éradication de la cause racine, on peut donc vouloir aller plus loin en limitant la propagation de la vibration dans le foil et vers la cabine. Pour cela il faut appliquer la méthode masse/élastique : faire un foil et un puit avec des matériaux lourd et isoler le puit du reste du bateau avec un matériau élastique : un silent block.

Enfin pour les fans de technologie la vibration pouvant être captée en amont, un haut-parleur peut être actionné pour diffuser l’onde inverse du son du foil et réduire ce bruit. Je ne suis pas fan mais ce n’est pas de la science-fiction, ça se fait dans divers secteurs de l’industrie et dans les casques d’aviateur haut de gamme.

L’intérieur de la cabine peut pour finir être équipée de surfaces absorbantes, les boites a œufs des salles de répet de notre adolescence, les tentures de châteaux ou les sifflets des chambres anéchoïques par exemple.

Cependant traiter le problème a sa source reste la meilleure solution car les vibrations ne fatiguent pas que les marins, elles fatiguent aussi les matériaux.

Que faire pour les chocs ?

Il y a 20 ans avec l’essor des NGV on parlait de sonar capable de détecter les obstacles proche de la surface vers l’avant du navire. On a aussi parlé de caméra thermique. Je n’en entends plus parler. Le moyen de détection du moment s’appelle REPCET. Il est spécialisé dans la détection de cétacés et fonctionne un peu comme coyote avec les flashes routiers. Un marin qui voit une baleine transmet sa position et le logiciel diffuse cette position aux autres bateaux avec une zone de probabilité qui s’élargie avec le temps. Si son utilisation est adaptée pour inclure les objets flottants dans la base de données en tenant compte des courants et que son utilisation est généralisée ça pourrait bien marcher.

Toujours en F18 lorsque les grosses méduses envahissaient le pertuis proche de La Rochelle le blocage bille ressort était efficace pour les chocs sur les safrans, pour les chocs avec les dérives en général l’équipier au trapèze allait embrasser violemment le mat. La hantise de la ventilation sur les dérives a poussé à les encastrer dans la carène. Il est peut-être temps de modifier la liaison de ces appendices afin de les protéger comme les safrans avec une liaison pivot et un indexage bille-ressort. Ça va faire un peu péniche hollandaise mais si ces solutions peuvent économiser du carbone et épargner Flipper le dauphin ça mérite d’être essayé. Evidemment la rotation interdirait les foils en L, J, C,H etc.

Le risque de choc et les moyens de s’en prémunir a été traité de manière plus complète dans l’article « Les obstacles » il y a 6 ans (Par Xavier Labaume).

Conclusion

La roue pour permettre des déplacements tout terrain, rapides et confortables a dû être équilibré, équipée de pneumatique et de suspension. Le foil hauturier a également besoin de périphériques pour en tirer le meilleur. Sur un tour du monde, le navire qui gagnera ne sera pas forcément celui ayant trouvé la géométrie avec la meilleure hydrodynamique mais celui pouvant garantir cette utilisation en continue pendant 1874 heures.

Enregistrer

Enregistrer

Enregistrer

Enregistrer