NY – Les sables, « good vibes » ?

Par Olivier Verschoore

Vibrations et confort

Que faire au Sables d’Olonne une semaine pluvieuse du mois de juin… accueillir les Imoca à foil ou à dérives de la première New York – Vendée évidemment !

Où est passée la foule immense des Vendée Globe ? Pour l’arrivée de cette nouvelle course il n’y a presque personne. Là où, dans 5 mois, 1 million de passionnés se presseront et jouerons des coudes pour avoir un autographe, la semaine dernière on pouvait tranquillement promener son Bouvier Bernois sur le ponton, discuter avec les équipes et les skippers, prendre son temps. Les enfants ont eu leur photo souvenir, un skipper serait même descendu pour donner une caresse au chien entre deux interviews.  Et c’est tout ? Ca dépend, si le badaud se trouve être un lecteur assidu de Foilers !, qu’il rêve d’avoir son Williwaw pour foiler tranquillement au milieu des océans, non ce n’est pas tout : on a pu « parler foil ».

Maitre coq avec Jérémy Beyou, Gitana 15 avec Sebastien Josse, Hugo Boss avec Alex Thomson, le podium de cette transat et monopolisé par les Imoca à foils.

Jérémy Beyou le vainqueur, avec une traversée en 9 jours et 17h, a fait adapter son bateau pour y loger des foils dernièrement. Il explique que sans les foils le bateau est lourdaud. Avec les foils le bateau devient très réactif. Il explique que lorsque le bateau commence à s’arracher à l’eau, l’accélération est franche, il devient même émouvant en répétant en boucle « ça accélère, ça accélère, on ne sait pas quand ça va s’arrêter ». Par contre les décélérations sont aussi brutales que les accélérations sont franches, avec une coque planante sans redans je dirais : « normal ». Les foils de Maitre coq sont équipés d’un aileron perpendiculaire à l’intrado au niveau de sa partie la plus courbe. Je ne me l’explique pas.

Sébastien Josse développe plus les aspects stabilité, confort et sécurité.

Les Imoca ne volent pas encore complètement. Ils sont soulevés un peu en avant du centre de gravité et l’arrière du bateau est au planning. C’est une configuration stable qui ne nécessite pas de modification de safran. Avec un plan porteur horizontal intégré le comportement de ce dernier en cas de choc serait modifié, on aurait alors peut-être à nouveau des cas de perte de safran.

Le problème dans cette configuration c’est le manque total de confort. Le bateau est soulevé sur l’avant et le clapot rencontre la carène sur une zone pratiquement plate optimisée pour le planning sans foil. Pas de V profond pour fendre l’eau, chaque vaguelette vient claquer sur la peau de carbone du tambour Imoca.

Pour achever le marin, les foils transmettent des vibrations très aiguës dans la caisse de résonance qui sert d’abri au marin. Morgan Lagravière sur Safran s’est particulièrement plaint de ce bruit qui rend fou. Tous les skippers portent des casques antibruit pour supporter ce sifflement.

Pour la sécurité, Sébastien pragmatique explique que les foils ont la même surface frontale projetée que les dérives. Le risque de collision est donc identique. Safran de Morgan Lagravière et Virbac St Michel de JP Dick ont explosé leurs foils, Tanguy Delamotte a fendu une dérive. Ce risque est donc similaire… à la vitesse prés : un choc à 15 nœuds ou à 25 nœuds en termes d’énergie à dissiper c’est pratiquement un rapport de 1 à 3. Le carbone n’ayant pas bâti sa réputation sur la résistance au choc, il se solde immanquablement par une amputation à la jointure.

Chirurgie suite à l’amputation sur Safran - photo O. Verschoore 06/2016
Chirurgie suite à l’amputation sur Safran – photo O. Verschoore 06/2016
Chirurgie suite à l’amputation sur Safran - photo O. Verschoore 06/2016
Chirurgie suite à l’amputation sur Safran – photo O. Verschoore 06/2016
Réparation à la truelle sur Virbac - photo O. Verschoore 06/2016
Réparation à la truelle sur Virbac – photo O. Verschoore 06/2016

 

Réparation à la truelle sur Virbac - photo O. Verschoore 06/2016
Réparation à la truelle sur Virbac – photo O. Verschoore 06/2016

Les foils de gitana ont un profil à peu près constant jusqu’à la courbure max du foil (pour pouvoir coulisser dans le puit) puis la corde devient franchement plus importante et s’affine régulièrement jusqu’au bout de foil.

Info Gitana : Le mod 70 qu’ils ont fait voler en mars est vendu afin de pouvoir faire un projet maxi « a foil ».

Alex Thomson sur Hugo Boss a fait un début de course sur les chapeaux de foils raflant le record de distance sur 24h. Malgré 4 chocs, avec probablement des poissons lune, pas d’avarie visible. Flegmatique et sympathique Sir Thomson tout sourire est juste content de ses foils ! Son bateau dont le triangle avant est batmaniesque a des foils avec de fines fences en carbone collées sur les deux tiers avant du profil. Ces dernières empêchent probablement de rentrer complètement le foil dans son puit. L’extrémité du foil est coupée net ce qui permet de bien voir le profil choisi. Des marques sur le foil sont visibles depuis le cockpit pour mesurer son immersion, l’extrémité n’est pas traitée car elle est sensée toujours être émergée.

Hugo Boss - photo O. Verschoore 06/2016
Hugo Boss – photo O. Verschoore 06/2016
Hugo Boss - photo O. Verschoore 06/2016
Hugo Boss – photo O. Verschoore 06/2016

Ces marins, et la moitié de la flotte Imoca, partiront dans 5 mois avec leurs foils de record de vitesse et de torture.

Comment faire pour diminuer ces contraintes ?

Sébastien explique clairement que « l’architecture des bateaux va changer : ils seront plus étroit et rond », le tambour de carbone devrait donc devenir de l’histoire ancienne dès qu’un architecte osera revoir en profondeur la carène. De même source aujourd’hui c’est l’équipe d’Alex qui est allée le plus loin dans le concept, son bateau est plus étroit alors que la largeur sur les Imoca est gage de puissance. La décision tardive de Jérémy lui aura été profitable, son bateau est « d’ancienne génération », il a donc pu conserver des ballasts plus volumineux que les nouveaux bateaux. Avec l’adjonction d’un foil qui déplace sensiblement la poussée verticale habituellement assurée par la carène : le couple de redressement augmente, la puissance potentielle augmente.

Que faire pour les vibrations et les sifflements des foils? Cette question je ne l’ai malheureusement pas posé aux principaux concernés. Votre apprenti reporter n’a pas de carte de presse et parfois la timidité prend le pas sur l’opportunisme. Je vais donc répondre avec mes moyens et les informations trouvées sur le net.

J’aurai bien aimé que tout ce boucan soit dû à la cavitation. Les bateaux ont fait la traversé en 9 jours, pas en 4 jours, même à 25 nœuds difficile de penser qu’il s’agisse de cavitation. Donc la cavitation en Imoca ça viendra mais pour nos new-yorkais il s’agit d’autre chose.

Ce bruit les adeptes de catamaran type F18 le connaissent. Etudiant je l’adorait. Il voulait dire : Oliv tu fonces, ton bateau te remercie en chantant. Pas sûr que j’apprécierai cette chanson 24h/24 pendant 3 mois. Les surfeurs connaissent aussi ce sifflement. Ils le suppriment en ponçant le bord de fuite.

Ce bruit serait dû à l’instabilité du vortex sur le bord de fuite. Alternant rapidement de l’extrado à l’intrado ce dernier fait osciller la dérive ou le foil comme vous pouvez le voir sur cette vidéo.

Comme toute structure le foil possède une fréquence propre, si l’oscillation s’en approche la résonance augmente considérablement l’amplitude. Si cette fréquence propre se situe dans l’audible le concert peut commencer. Sur la vidéo le bord de fuite est biseauté de manière asymétrique pour réduire les vibrations.

Il s’agit probablement de la cause racine de ce bruit.

Le fait d’avoir des foils courbés ou en L avec des profils évolutifs risque de ne pas simplifier l’éradication de la cause racine, on peut donc vouloir aller plus loin en limitant la propagation de la vibration dans le foil et vers la cabine. Pour cela il faut appliquer la méthode masse/élastique : faire un foil et un puit avec des matériaux lourd et isoler le puit du reste du bateau avec un matériau élastique : un silent block.

Enfin pour les fans de technologie la vibration pouvant être captée en amont, un haut-parleur peut être actionné pour diffuser l’onde inverse du son du foil et réduire ce bruit. Je ne suis pas fan mais ce n’est pas de la science-fiction, ça se fait dans divers secteurs de l’industrie et dans les casques d’aviateur haut de gamme.

L’intérieur de la cabine peut pour finir être équipée de surfaces absorbantes, les boites a œufs des salles de répet de notre adolescence, les tentures de châteaux ou les sifflets des chambres anéchoïques par exemple.

Cependant traiter le problème a sa source reste la meilleure solution car les vibrations ne fatiguent pas que les marins, elles fatiguent aussi les matériaux.

Que faire pour les chocs ?

Il y a 20 ans avec l’essor des NGV on parlait de sonar capable de détecter les obstacles proche de la surface vers l’avant du navire. On a aussi parlé de caméra thermique. Je n’en entends plus parler. Le moyen de détection du moment s’appelle REPCET. Il est spécialisé dans la détection de cétacés et fonctionne un peu comme coyote avec les flashes routiers. Un marin qui voit une baleine transmet sa position et le logiciel diffuse cette position aux autres bateaux avec une zone de probabilité qui s’élargie avec le temps. Si son utilisation est adaptée pour inclure les objets flottants dans la base de données en tenant compte des courants et que son utilisation est généralisée ça pourrait bien marcher.

Toujours en F18 lorsque les grosses méduses envahissaient le pertuis proche de La Rochelle le blocage bille ressort était efficace pour les chocs sur les safrans, pour les chocs avec les dérives en général l’équipier au trapèze allait embrasser violemment le mat. La hantise de la ventilation sur les dérives a poussé à les encastrer dans la carène. Il est peut-être temps de modifier la liaison de ces appendices afin de les protéger comme les safrans avec une liaison pivot et un indexage bille-ressort. Ça va faire un peu péniche hollandaise mais si ces solutions peuvent économiser du carbone et épargner Flipper le dauphin ça mérite d’être essayé. Evidemment la rotation interdirait les foils en L, J, C,H etc.

Le risque de choc et les moyens de s’en prémunir a été traité de manière plus complète dans l’article « Les obstacles » il y a 6 ans (Par Xavier Labaume).

Conclusion

La roue pour permettre des déplacements tout terrain, rapides et confortables a dû être équilibré, équipée de pneumatique et de suspension. Le foil hauturier a également besoin de périphériques pour en tirer le meilleur. Sur un tour du monde, le navire qui gagnera ne sera pas forcément celui ayant trouvé la géométrie avec la meilleure hydrodynamique mais celui pouvant garantir cette utilisation en continue pendant 1874 heures.

Enregistrer

Enregistrer

Enregistrer

Enregistrer

L’alphabet du foil

16/04/2015

You want to find a good translation (translated with the help of Nicholas Waller at www.centpourcentanglais.com)? It’s on the excellent blog Proa file, follow the link: The Foil Alphabet.

Ouvrez vos cahiers, je ne veux plus rien entendre. Répétez après moi : C, E, J, L, O, S, T, U, V, Y (Z ?) sont les différents types de foils qui existent actuellement. C’est bien !

En effet, depuis l’article, « Foil en V, foil en T », de nouvelles lettres sont apparues ou se sont généralisées. Il est temps de refaire un point sur l’alphabet foilesque ! Surtout que nous ne sommes pas à l’abri de voir apparaitre de nouvelles formes. Car, oui, après un siècle d’évolution, nous sommes bien dans l’air du foil… Vous là bas au fond de la classe, vous voulez voler plus tard ?

Bon, pour déconner, je joue au professeur mais je n’en suis pas un et mon « cours » ci-dessous mérite sûrement d’être corrigé, donc, commentaires bienvenus.

Pour chaque type de foil, vous retrouverez :

  • Un petit historique
  • Quelques exemples d’engins équipés du type du foil présenté. Ceci pour chaque grande famille, les foilers et multicoques à foils d’appoint ainsi que les hydrofoils (voir rappel des définitions sur la page « Définitions » de ce blog).
  • Un schéma. J’ai essayé de représenter les forces générées : portance et force antidérive. Ceci en fonction de leur champ d’application le plus logique (foiler ou hydrofoil). Pour les foilers, en position basse et rétractée (si rétraction possible), pour les hydrofoils, en mode archimédien et en vol.
  • Des tentatives d’explications du fonctionnement pour la portance et pour l’effet antidérive
  • Une liste d’avantages et d’inconvénients

Il est impossible de balayer l’ensemble des architectures et des utilisations possibles. Si bien que la liste des avantages et inconvénients de chaque type de foil proposé est obligatoirement non exhaustif : c’est ainsi !

1 – Foil en E !

Historique

Le foil en E n’est qu’une pure invention de ma part : il s’agit du foil en échelle. Il fallait bien que j’arrive à trouver l’équivalent de chaque type de foil dans l’alphabet latin. Le « E » peu découler de la première lettre du mot « échelle » ou correspondre aux différentes barres du « E » majuscule. Elles ne sont pas sans rappeler les différents étages des plans porteurs en échelle. La seconde explication semble mieux tenir la route, que dis-je, le run. En effet « E comme Echelle » cela ne fonctionne pas en anglais, pas plus qu’en italien…

Il semble que les premiers à avoir dessiné et testé des foils en échelle soient les frères Meacham. En 1897, ils testent un modèle équipé de cinq surfaces portantes. Dans leur brevet déposé en 1910, le plan porteur en T régulé, la partie mobile est surmontée d’un second plan non régulé. Il s’agit donc d’un foil en échelle.

Sur les foilers et multicoques à foils d’appoint

Ces foils n’ont pas été prévus pour ce type d’engins qui ont vu le jour après les hydrofoils. Surtout les architectures développées ensuite se sont révélées plus performantes pour ce type de bateaux.

Sur les hydrofoils

Au 19 et 20ème siècles, cette solution était une réponse à la difficulté de réaliser de longs plans porteurs de fort allongement et faible épaisseur.

Enrico Forlanini 1906, Crocco et Ricaldoni 1907, Peter C. Hewitt 1907, A. G. Bell et Casey Baldwin… Williwaw, aujourd’hui P28 Gonet & Cie.

L'alphabet du foil - foils en E Hydrofoil - F Monsonnec 08-2014

Portance

Les premiers modèles avaient des plans porteurs disposés en parallèle horizontalement. Ensuite des prototypes ont été équipés de parties portantes inclinées. Dans un cas comme dans l’autre, la portance est fonction de la hauteur de vol. En échelle avec des plans horizontaux, la courbe de portance est en escalier avec des niveaux. Ce n’est pas le cas avec des plans inclinés.

Surface antidérive

Sur les foils en échelle horizontaux comme inclinés, la surface antidérive est fonction de la hauteur de vol et de la complexité de la structure.

Avantages

  • Bonne solidité liée au fait d’utiliser de petites longueurs et de réaliser une sorte de maillage.
  • Effet plaque qui évite les vortex de bout d’aile, qui est la partie positive du fait d’avoir des nœuds de jonction !

Inconvénients

  • Nombreux nœuds de jonction donc trainée importante
  • Difficultés de positionnement parfait des différents plans
  • Plus forts risques de trainer des algues ou résidus

2 – Foil en V

Utilisé sur les foilers et hydrofoils il s’agit de simples plans porteurs rectilignes inclinés le plus souvent à 45°. L’incidence est rarement variable, la portance est fonction de la surface immergée. Le V étant en fait la combinaison des deux foils. Variantes possibles, le foil peut être vrillé pour avoir une incidence variable en fonction de l’enfoncement. On peut aussi intégrer un volet de bord de fuite (Cote d’Or, Syz & Co…). Le premier concepteur de voilier volant à avoir utilisé cette configuration semble être Robert Row Gilruth, le père du premier voilier volant grandeur nature.

Sur les foilers et multicoques à foils d’appoint

La portance des foils est inférieure au déplacement de l’engin, de ce fait les plans porteurs restent la majorité du temps immergés.

Trimama, Paul Ricard, Ker Cadelac 2

Sur les hydrofoils

La diminution de la surface mouillée diminue la portance, ce type d’arrangement est appelé « autostable » même si dans la réalité le système à ses limites puisque le team de l’hydroptère, a un temps réfléchi à la mise en place d’une régulation de l’incidence du safran (voir mon point du vu sur ce sujet dans la PN 26 et la 28).

Icarus, Mayfly, L’Hydroptère …

L'alphabet du foil - foils en V Foiler - F Monsonnec 08-2014L'alphabet du foil - foils en V Hydrofoil - F Monsonnec 08-2014

Portance

Elle est fonction de la projection sur l’axe horizontale de la surface immergée, elle diminue avec la hauteur de vol.

Surface antidérive

Comme pour la portance, elle est fonction de la projection sur l’axe, cette fois verticale, de la surface immergée, elle diminue aussi avec la hauteur de vol.

Avantages

  • Système « éprouvé »
  • Foil disposant d’une certaine plage d’autorégulation

Inconvénients

  • La résultante de la portance se déplace sur le foil en fonction de son enfoncement.
  • La fixation de ce type de foil n’est pas évidente, les hydrofoils ont recours assez souvent à des jambes de force.
  • La sortie de ce type de plan porteur sur les foilers et tri à foils d’appoint se trouve souvent au ras de la ligne de flottaison d’où des risques de ventilation.
  • Ils sont soumis à d’importants efforts et ne sont pas toujours faciles à rétracter.

3 – Foil en T

En 1906, les frères Meacham publient un article ou ils exposent les principes de base d’un hydroptère à foils en T régulés. Ce type de foils a été amélioré par Christopher Hook en 1950 sur son bateau baptisé Hydrofin (voir Historique des systèmes mécaniques de régulation de l’incidence des foils).

Sur les foilers et multicoques à foils d’appoint

Ils ont été rarement utilisés puisque, sauf s’ils sont équipés d’un système de régulation automatique (ce que je n’ai jamais vu sur ce type de bateau), la portance de ces foils ne s’autorégule pas. La plupart du temps, la surface est faible (donc la portance), et le foil reste tout le temps immergé. Dans le cas contraire, le foil pourrait arriver à la surface et décrocher avec tous les risques que cela comporte.

Il parait donc plus intéressant dans ce cas d’utiliser un foile en V (dans un puis) ou surtout en Y.

We/sebago, F40 Triton, Blue Arrow, VSD 2

Sur les hydrofoils

La remarque ci-dessus est tout aussi valable et encore plus vitale, ce qui explique que dans ce cas de figure les foils en T sont équipés d’un système de régulation. Palpeurs ou trainards qui agissent sur l’angle d’incidence du plan inférieur ou par mouvement d’un volet.

Force 8, Phifly, Windrider Rave, Moth à foils, planche à foils de Rich Miller, AFS 1

L'alphabet du foil - foils en T Hydrofoil - F Monsonnec 08-2014

Portance

Elle est fonction de la surface et de l’incidence de la partie horizontale. A l’inverse des foils en V sur les hydrofoils, la surface ne varie pas mais l’incidence oui

Surface antidérive

Elle est liée à la surface de la partie verticale, la jambe de force, qui diminue avec la hauteur de décollage.

Avantages

  • La résultante de la portance passe par la jambe de force ce qui permet d’obtenir une structure résistante.
  • Le plan porteur est relativement immergé il est donc moins soumis à la ventilation et il a moins d’interférence avec les mouvements des particules d’eau en surface.

Inconvénients

  • Régulation obligatoire dans le cas d’un hydrofoil
  • Fragilité des systèmes de régulation
  • Rétraction des foils pas évidente
  • Trainée du nœud, la liaison jambe de force / plan porteur (possibilité de mise en place d’une torpille)

4 – Foil en Y

Inventé par Sylvestre Langevin les foils en Y inversé sont une des marques de fabrique de ses foilers. D’autres ont essayé ce type de plan porteurs comme Adrian Thompson sur le F40 Promocéan ou le duo MVP VLP. Mais les foils de ce bateau avaient été étudiés en collaboration avec S Langevin !

Sur les foilers et multicoques à foils d’appoint

C’est le « fond de commerce » de ce type de foils.

Gautier II, Gautier III, Ker Cadelac, Découvert/PiR2, Dupon Duran, Promocéan, Flash Harry et Groucho Marx

Sur les hydrofoils

Pas d’utilisation connue

L'alphabet du foil - foils en Y Foiler - F Monsonnec 08-2014

Portance

Ces foils s’auto régulent en diminuant leur portance en se rapprochant de la surface. La forme en Y permet de réaliser une régulation « souple » ce qui n’est pas le cas avec des foils en T qui décrochent d’un coup lorsque le profil ventile. Autre point intéressant, l’augmentation de l’angle formé par chaque 1/2 plan porteur et la jambe de force (angle supérieur à 90°), doit limiter les interférences entre la portance des 1/2 plans porteurs et celle de la jambe de force qui est aussi soumise à la dérive. Ce type de foil permet, à une certaine vitesse, de décoller le flotteur sous le vent au dessus de l’eau et de garder la coque centrale en contact avec la surface.

Surface antidérive

Partie verticale et composante des parties portantes (fonction de l’angle)

Avantages

  • Totalement immergés sur un foiler, moins de ventilation
  • Eforts équilibrés des deux plans porteurs sur la jambe de force

Inconvénients

  • Difficilement escamotables
  • Lorsque les parties portantes se rapprochent de la surface, plus de trainée qu’un foil en V

5 – Foil en L 1.0

Apparu sur la première maquette de Greg Ketterman en 1981, puis sur l’ensemble des Trifoilers, ce type de foil est une amélioration du foil en T, comme si la partie portante s’était déportée latéralement. Une fois modifié, le foil en L est devenu ce que nous appelons un foil en J.

Sur les foilers et multicoques à foils d’appoint

La gestion de la portance de ce type de foil impliquant l’utilisation de systèmes de régulation, les foils en L ne sont pas utilisés sur ce type de bateaux

Sur les hydrofoils

Par rapport au foils en T, ces foils permettent de résoudre le problème de liaison partie verticale / partie horizontale mais moins de portance sur la zone de liaison et fragilité.

Les trifoilers, Sylphe de Tadeg Normand

L'alphabet du foil - foils en L 1.0 Hydrofoil - F Monsonnec 08-2014

Portance

Comme sur les foils en T, chaque partie à sa fonction. La verticale la force antidérive, l’horizontale la portance. La jonction entre les plans peut être plus ou moins importante en taille. C’est un compromis surface/résistance/trainée.

La surface ne varie pas c’est l’incidence qui varie, normalement, par le mouvement complet du foil, partie horizontale et verticale.

Surface antidérive

Obtenue par la partie verticale du foil, diminution en fonction de la hauteur de vol.

Avantages

  • Absence de nœuds de liaison donc moins de perturbations…. !

Inconvénients

  • Déformation liée au fait que la résultante de la portance est écartée de la partie verticale.
  • L’absence de nœud peut passer pour un avantage toutefois, à la jonction entre les deux plans les valeurs de dépression entre la partie verticale et l’horizontale sont différentes et peut générer des vortex. Le rayon de courbure supprime de la surface efficace. L’allongement efficace du profil serait d’après G Ketterman celle de la surface immergée donc plus importante que le seul allongement de la partie horizontale. Toutefois, je pense que ceci n’est valable qu’à condition que la jonction partie verticale/ partie horizontale (ou inclinée) soit assez progressive !

6 – Foil en U

On pourrait penser qu’il s’agit de deux foils en L assemblés mais l’idée remonte bien avant la création des foils en L ! En 1954, le catamaran Skid dessiné par Arthur Locke utilisait un foil entre le O et le U. C’était un O incomplet ou un U un peu fermé ! En tout cas, long de 20 pieds, large de 12 et pesant 710 lbs, il volait ! Plus proche de nous, Maurice Gahagnon a revisité ce type de foil sur Brest Nautic. Cette forme permet de réaliser un foil résistant et facile à fixer mais aussi d’obtenir une bonne surface antidérive.

Sur les foilers et multicoques à foils d’appoint

Je ne l’ai jamais vu, cette configuration sur ce type d’engins, la présence de deux jambes de force, qui sont génératrices de trainée, incite plutôt leur utilisation sur un hydrofoil.

Sur les hydrofoils

Il est assez étrange qu’un faible nombre de concepteurs ait misé sur ce système, qui convient pourtant très bien aux amateurs…

Skid, Brest Nautic, différentes versions de Loisirs 3000.

Sans oublier les travaux de Gurval sur le « Curved foil » qui équipe son DAFOILBOARD. Il s’agit d’un « U ouvert » ou d’un « V arrondi » que notre ami Gurval semble tester avec bonheur (merci GG).

L'alphabet du foil - foils en U Hydrofoil - F Monsonnec 08-2014Portance

Comme un foil en T, la surface de la partie portante ne varie pas, c’est l’incidence qui, est et doit être, régulée.

Surface antidérive

Idem foils en T, elle est fonction de l’enfoncement du foil

Avantages

  • Les foils peuvent être identiques, donc un seul moule L’angle d’incidence maxi se trouve au milieu du foil et va en diminuant au fur et à mesure que l’on se rapproche des parties verticales. Près de la surface il n’y a « pas de portance » et donc pas de ventilation.
  • Il n’y a plus de problème de bout d’aile et de vortex. Grande solidité

Inconvénients

  • Surface mouillée importante
  • Régulation obligatoire et de l’ensemble du plan, « pas » de possibilité de volets (sauf si présence d’une zone plate au milieu)

7 – Foil en O

Assez proches des foils en U, cette forme a été utilisée par les frères Loïck et Gilles Durand sur leur tripode O PAF. En forme de « O » et réalisés en carbone, ils étaient asservis en profondeur grâce aux palpeurs fixés à l’extrémité des flotteurs.

Sur les foilers et multicoques à foils d’appoint

Idem foils en U, pas d’utilisation sur des bateaux de ce type

Sur les hydrofoils

Comme noté plus haut, ce type de forme a été utilisé avec certitude sur O PAF, ailleurs… ?

O PAF

L'alphabet du foil - foils en O Hydrofoil - F Monsonnec 08-2014

Portance

Elle diminue en fonction de la hauteur de décollage soit en raison de l’asservissement, soit de part le fait que la surface portante diminue. Diminution qui n’est pas linéaire comme sur les foils en V. Ce qui, je pense, oblige à avoir une régulation et de ne pas compter seulement sur la diminution de surface.

Par exemple, si le foil est au repos enfoncé de la moitié du diamètre du cercle (ligne de la flottaison au niveau de l’axe), alors un décollage de quelques cm va faire surtout faire perdre de la surface antidérive mais faiblement de la portance qui est plus liée à la partie basse du cercle/foil.

Si mon analyse est exacte, lorsque la ligne de flottaison arrive au point représenté par la droite qui passe par le centre du foil et une droite à 45° par rapport à l’horizontale, alors c’est la portance qui va surtout diminuer.

Surface antidérive

Voir ci-dessus

Avantages

  • D’après G et L Durand, la forme en « O » permet une réalisation simple. La forme de base avait été obtenue sur un moule en plâtre. Les foils étaient ensuite usinés sur un tour. Leur forme très résistante rendait possible la réalisation de foils solides et fins : 9 mm

Inconvénients

  • Encombrement
  • Diminution non linéaire de la force antidérive et de la portance
  • Rétraction difficile

8 – Foil en C

Au départ surtout utilisé à la place des plans porteurs à 45° sur les multicoques à foils d’appoint, Bernard Smith a dès 1972 proposé d’utiliser des foils courbes dans son brevet 3 631 828. Je ne sais pas s’il a eu l’occasion de les essayer, il est vrai que ces engins restaient le plus souvent à l’état de maquette ou ne naviguait pas de façon optimale en vraie grandeur. Derek Kelsall a réalisé vers la fin des années 70, des moules de foils courbes et a utilisé ce type de foils sur Bites and Pieces, bateau réalisé à partir de morceaux de Tornado et testé à Brest en 1980. John Shulttleworth, qui a travaillé chez Derek, a lui aussi dessiné des foils courbes.

Sur les foilers et multicoques à foils d’appoint

C’est une excellente solution qui a fortement amélioré les performances de ce type de bateau qui jusque là étaient surtout équipé de foils à 45°.

Orma 60’, Mod 70…, BMW Oracle 33 coupe de l’America

Sur les hydrofoils

Ce type de foil ne permet pas une régulation facile de la portance (voir inconvénients), de ce fait les engins qui on au départ misés sur ce type de plans se sont tournés, s’ils le pouvaient (jauge par exemple), vers les foils en L ou J.

Enya 3, Classe A de Raphaël Censier

L'alphabet du foil - foils en C Foiler - F Monsonnec 08-2014

Portance

Elle est fonction de l’enfoncement qui fait « doublement » varier la portance. Il y a bien entendu une variation de la surface mais plus la foil est enfoncé et plus la portion de partie portance se rapproche de l’axe horizontale ce qui augmente la portance.

Surface antidérive

Elle évolue fortement en fonction de l’enfoncement de la partie basse du foil puis, à partir d’un certain enfoncement, la surface antidérive évolue faiblement.

Avantages

  • La sortie du foil se fait bien plus bas dans le flotteur, près de la ligne de quille ce qui permet de reculer l’arrivée de la ventilation.
  • La variation de leur enfoncement fait « doublement » varier la portance.

Inconvénients

  • Les foils en C sont instables en pilonnement lorsque le flotteur décolle la portance ne diminue que faiblement, il n’y a qu’une très faible régulation naturelle et donc de fort risques de décrochement ce qui explique l’utilisation surtout pour des foilers.
  • Réalisation bien plus complexe que celle d’un foil plan.
  • Puis de foil complexe.
  • La régulation de ces foils, dont la partie basse une fois complètement enfoncée se rapproche d’un foil en L, est bien plus difficile à gérer. Elle peut se faire part :
  1. la régulation de l’enfoncement,
  2. part une action sur l’incidence du plan porteur (modification de l’angle par rapport à la verticale par rapport à l’axe longitudinal)
  3. sur les petits bateaux part une action sur l’inclinaison de la plateforme
  4. le réglage de l’incidence d’un safran à foil.

9 – Foil en J

Il s’agit d’une évolution du C qui se serait marié avec un L ! La partie haute du foil étant verticale. Par rapport au L, le fait de ne pas avoir une partie basse rectiligne mais courbe, permet une rétraction par le haut ce qui permet de satisfaire certaines jauges et bien entendu de permettre une régulation de la portance.

Sur les foilers et multicoques à foils d’appoint

Ils pourraient avoir leur utilité mais l’obligation d’avoir un système de rétraction complexe doit freiner la mise en place de ce type de foils.

Sur les hydrofoils

Ils ont fait leur apparition sur les AC45 avant qu’ils ne soient remplacés par les S.

L'alphabet du foil - foils en J Foiler - F Monsonnec 08-2014Portance

Pour toute la partie courbe, donc la première partie de l’enfoncement du plan il s’agit d’un foil en C. Par la suite, seule la surface antidérive varie.

Surface antidérive

Elle évolue fortement en fonction de l’enfoncement de la partie haute du foil. A partir d’un certain enfoncement, la surface antidérive augmente et pas la portance (sauf si en plus on joue sur l’inclinaison de l’ensemble !).

Avantages

  • La sortie du foil se fait bien plus bas, près de la ligne de quille ce qui permet de reculer l’arrivée de la ventilation.
  • La gestion de la surface antidérive et de la portance plus simple qu’avec un foil en C. Le début de l’enfoncement du foil régule la portance en augmentant la surface projetée sur l’horizontale. Une fois la partie circulaire entièrement descendue, c’est la surface antidérive qui augmente.
  • La portance maximale reste disponible quand le foil est partiellement rétractée (contrairement au foil en C qui devient de plus en plus « verticale » lorsqu’on le rétracte).

Inconvénients

  • La gestion de la surface antidérive et de la portance est en effet plus simple qu’avec un foil en C mais reste arbitraire avec une régulation de la portance en début d’enfoncement et de la force antidérive ensuite. Les foils en J sont donc également instables en pilonnement et serait plus adaptés à une utilisation sur les foilers.

10 – Foil en L 2.0

Cette évolution du foil en L, avec un « L » très fermé qui forme un « V » lorsqu’il est déployé est apparue dernièrement. C’est d’après moi, le mariage des avantages de différents types de foils :

  • V pour la régulation par diminution de surface mouillée,
  • L pour la dichotomie partie portante/partie antidérive,
  • C de part la forme de la partie antidérive le plus souvent légèrement courbe,
  • J pour l’évolutivité de la position des différentes parties !

Mais il s’agit bien d’un foil en L qui a un angle inférieur à 90° entre la partie antidérive et la partie portante et qui a une partie supérieure courbe !

Ce foil en L avec une base très fermée aussi appelée « UptiP » aurait été inventé par Melvin et Morelli pour l’équipe TNZ…

Sur les foilers et multicoques à foils d’appoint

Ce type de foils a été développé pour des hydrofoils, donc des bateaux dont le but principal est de voler. Ils sont trop axés vol, pour avoir leur utilité sur ce type de bateau.

Sur les hydrofoils

Ils sont là et bien là, nés pour les AC72, utilisés sur certains classe C et sur le Flying Phantom, ils vont sûrement essaimer. Mais n’oublions pas qu’ils ne sont pas la panacée, ils ont été développés pour contourner une règle de jauge…

Certaines versions des AC 72, Flying Phantom !

L'alphabet du foil - foils en L 2.0 Hydrofoil - F Monsonnec 08-2014

Portance

Elle dépend de l’importance de la partie portante (partie basse). Elle est maximum lorsque le plan est faiblement descendu puisqu’il n’est pas incliné. Quand le plan porteur est descendu, l’extrémité peut se rapprocher de la surface, donc la portance chute. Le vol fait de toute façon aussi diminuer la partie située en dessous du puis ce qui participe à la régulation. En fait, on se rapproche des foils en V. A la place que le V soit constitué de deux foils rectilignes très écartés, ont a là deux « petits » foils en V constitués de la partie plane et de la partie courbe. En cherchant bien, ces deux V (VV) représente un « W » !

La surface portance reste constante ou presque avec l’élévation (jusqu’à un certain point) mais la partie antidérive diminue et l’angle de dérive augmente ce qui a pour action de diminuer l’angle d’incidence et la portance. Bien sur la pointe du foil peut arriver à la surface mais ce ne serait pas les conditions souhaitées de fonctionnement. Les meilleures performances sont obtenues avec la coque au-dessus des vagues mais l’aile immergée en dessous de la surface.

Ce système semble permettre de se « passer » de régulation, en réalité, elle se fait soit par l’enfoncement du plan, la position de l’équipage (petit bateaux), l’incidence complet du plan (Flying Phantom, Oracle…), un safran avec plan porteur en T. Et bien sur, l’utilisation de plusieurs de ces paramètres !

Surface antidérive

Elle est surtout basée sur l’enfoncement de la partie courbe.

Avantages

  • Permet sans palpeur une sorte d’autorégulation que ne permet pas le foil en T, L, O…
  • Peut permettre de contourner certaines jauges

Inconvénients

  • La régulation n’est pas aussi simple que celle que l’on pourrait obtenir avec une régulation mécanique ou en « pur » V.
  • Foils complexes à gérer et à réaliser (appendice et puis)

11 – Foil en S

Il peut s’agir d’un foil « simple » sans partie portante rajoutée (type L) ou d’un foil en L qui aurait été coincé dans une porte avant polymérisation de sa structure !

Développé, sauf erreur de ma part, pour la première fois pour Alinghi ce premier proto n’avait semble t’il pas donné satisfaction. Peut être par manque de temps de mise au point… Il est vrai que le but n’était pas alors de voler mais de soulager.

Il est maintenant possible de marier un foil en L avec cette forme de partie « verticale ». Étonnamment, même si le principe est plutôt celui d’un foil en L particulier, ce foil prend le nom de la forme de la partie torturée.

Sur les foilers et multicoques à foils d’appoint

Sans partie portante il permet une évolutivité de la portance en fonction de l’enfoncement mais le puis de foil est tout de même très compliqué ce qui le rend surtout intéressant pour des bateaux « côtiers ».

Alingui 5

Sur les hydrofoils

Utilisé par le Team Groupama, ils ont montrés leur potentiel lors de la Little America’s cup.

L'alphabet du foil - foils en S Foiler - F Monsonnec 08-2014

L'alphabet du foil - foils en S Hydrofoil - F Monsonnec 08-2014

Portance

Le principe se rapproche de celui du foil en L 2.0, seule la partie en S fait que l’inclinaison de la partie purement portante peut être ajustée différemment.

Quand le plan porteur est descendu, l’extrémité peut se rapprocher de la surface, donc la portance chute.

Surface antidérive

Fonction de l’enfoncement.

Avantages

  • Idem foil en L 2.0, permet sans palpeur une autorégulation que ne permet pas le foil en T, en L, O…

Inconvénients

  • La régulation n’est pas aussi simple que celle que l’on pourrait obtenir avec une régulation mécanique ou en « pur » V.
  • Foils très complexes à réaliser

12 – Tableau récap.

En simplifiant à l’extrême, voici (toujours pour moi) suivant le cahier des charges « foiler » ou « voler » les types de foils utilisables :

L'alphabet du foil - tableau type foil suivant Foiler ou Hydrof - F Monsonnec 08-2014

  1. possible mais ce n’est pas la forme la plus logique !
  2. sans partie portante pur pour un foiler

Sans tenir compte des cas particuliers, et en partant du principe qu’une régulation n’est pas un réglage d’incidence manuelle ou par inclinaison de la plate forme mais bien un système de mesure et de réglage (palpeur et rotation flap…), nécessité oui (O) ou non (N) d’un système de régulation sur un bateau dont le but est de voler :

L'alphabet du foil - tableau nécessité régul en fonction du foil - F Monsonnec 08-2014

  1. théoriquement devrait se comporter comme un V mais jamais utilisé pour ce type de bateau
  2. comme noté plus haut, ils se rapproche alors d’un foil en V
  3. les essais de ce type de plans ont montrés qu’ils sont trop instables pour ce cahier des charges

13 – Petit glossaire

L'alphabet du foil - glossaire - F Monsonnec 08-201414 – Mais aussi

Z

On entend parler en ce moment de foil en Z (n’est ce pas Arnaud ?). En l’absence d’information précise je n’ai pas essayé de l’intégrer dans ce récapitulatif. Peut être que ce foil en « Z » est proches de la famille des « L » plus ou moins travaillés ?

Δ Le Delta prolongé !

Xavier m’a signalé une vidéo dans laquelle on peut voir une forme assez spéciale. J’ai du mal à la discerner, mais je crois découvrir une sorte de pyramide avec comme base le plan porteur. Si c’est bien le cas, c’est étrange. Peut être relativement solide au niveau du foil mais moins de sa fixation. Est ce qu’il y a un intérêt à avoir les jambes de force inclinées, peut être suivant le profil utilisé ? Le concepteur, Seb Schmit, n’est pas un débutant puisque qu’il a travaillé sur de nombreux projets volants comme le P28.

15 – Fin

Voila, des questions, des remarques ? D’accord, j’ai du oublier un bateau, un avantage, un inconvénient (voir +) me planter sur un point de vue… Mais vous êtes là pour ça ! Alors merci pour vos interventions… Dans le cas contraire, vous pouvez fermer vos cahiers et bonne récré !

Merci à mon ami GG d’avoir bien voulu relire ce document (GG on se retrouve en salle des profs pour le café de 10h00 ?).

Méthodes et technologies de réalisations d’hydrofoils prototypes par et pour les amateurs éclairés !

Par Gérard Delerm

Article issu d’une série de mails entre G. Delerm et F. Monsonnec en 2004.

Je parlerai ici uniquement de la réalisation de foils rectilignes de forme rectangulaire (la plus simple), sachant que des formes (outline) un peu plus complexes peuvent être aussi réalisées.

1 – Les foils en matériaux composites (fibres imprégnées de résines) avec éventuellement un cœur en matériau tendre (mousse ou bois)

La première idée qui vient à l’esprit lors de la mise en œuvre d’un hydrofoil prototype est de tailler une forme dans un matériau de type bois ou mousse dure et de stratifier ensuite cette forme avec de la fibre (verre, carbone ou autre) et de la résine (polyesther ou époxydique).

La mise en forme du cœur peut être réalisée de différentes façons, de la méthode la plus simple (manuelle guidée et contrôlée par des gabarits) jusqu’à la plus sophistiquée (de type fraisage numérique) en passant par des méthodes de fraisage semi manuel du bois ou du contreplaqué et l’empilage de profils (2 mm ou plus d’épaisseur) découpés et collés.

Cette méthode qui semble simple et rapide pour un prototype à un seul exemplaire a cependant quelques inconvénients :

  • La stratification de quelques couches de fibres (entre 2 et 10 couches à mon avis) modifie le ou les profils du foil. Il faut prendre en compte cette modification et il est à remarquer que le calcul de la modification du profil du cœur  nécessaire à obtenir in fine le profil souhaité est plus complexe que l’on pourrait le penser (surtout au niveau des bords d’attaque et de fuite).
  • Si le nombre de couches est faible (2 ou 3), le moindre choc peut endommager la peau et entrainer une pénétration d’eau dans le cœur, ce qui déclenchera à terme de la délamination.
  • Si le cœur est assez tendre, il y aura des risques d’écrasements de ce cœur au niveau de la jonction du ou des supports avec le foil. Il faudra donc en tenir compte et renforcer en profondeur le cœur à ces endroits là.

 2  – Mise en œuvre d’un foil moulé.

Personnellement, je pense que même si le but est de réaliser un seul exemplaire de foil, il est préférable d’utiliser une méthode mettant en œuvre un moule. La plupart des coques de bateaux de compétition, monocoques ou autres sont réalisées en utilisant un moule qui ne servira très souvent qu’une fois. Je pense qu’il peut en être de même pour nos foils y compris pour une réalisation amateur.

En plus du fait de vous permettre de retirer une pièce en cas de problème, le travail de finition sur la maquette (ou modèle), puis sur le moule femelle, doit vous permettre d’obtenir une pièce de qualité. Bien qu’il ne faut pas oublier que le moule disposera des mêmes défauts que la maquette et qu’il est plus difficile de retoucher une pièce en creux qu’une pièce male !

Il est, bien entendu possible de réaliser ou faire réaliser un moule en deux parties (extrados et intrados) à partir d’une plaque assez épaisse en métal (acier inox ou aluminium) ou « médium » constitué d’un polymère chargé. Ces plaques seront usinées à l’aide d’une fraiseuse numérique. C’est une méthode rapide et fidèle mais très certainement chère.

Usinage d’un moule en aluminium - DR
Usinage d’un moule en aluminium – DR

Une méthode moins chère se décompose principalement en trois phases :

  • Réalisation de la ou des matrice(s) (maquette du foil)
  • Réalisation du moule
  • Moulage final du foil

2.1 – Réalisation de la maquette

La phase la plus délicate est la réalisation de la maquette du foil (appelée aussi modèle ou poinçon ou matrice suivant la littérature), généralement en deux parties. Toutes les méthodes et tous les matériaux sont utilisables du moment que l’on obtient un objet assez rigide et fidèle à la forme désirée.

Voici quelques exemples possibles :

  •  Entre 2 guides en matériaux dur (bois ou plaque plastique) on peut façonner du plâtre fin à modeler. La forme des guides est imprimée à l’échelle 1 et le dessin obtenu collé sur une plaque de 2 mm à 4 mm environ d’épaisseur. Le guide est alors découpé (scie à fil par exemple) et poncé le plus fidèlement possible.
  • Variante du précédent. Toujours entre 2 guides, on colle un bloc de bois tendre (Ayous ou Balsa) que l’on façonne à la râpe, lime et ponçage précis à l’abrasif fixé sur un bloc.
Réalisation maquette en plâtre - schéma G Delerm 07-2012
Réalisation maquette en plâtre – schéma G Delerm 07-2012
  • Encore entre 2 guides, on peut coller une feuille de polyéthylène expansée ou autre feuille semi rigide. Il est aussi possible de remplacer les feuilles semi rigide par des baguettes de bois utilisées en modélisme avec masticage et ponçage.
  • Dans cette méthode, il est à remarquer qu’il faudra modifier le profil des guides en fonction de l’épaisseur des feuilles ou des baguettes.
  • Comme pour la méthode « directe » on peut mettre en œuvre une maquette par empilage de profils puis mastiquer et poncer jusqu’à obtenir une forme quasiment parfaite.
Réalisation maquette par empilement - schéma G Delerm 07-2012
Réalisation maquette par empilement – schéma G Delerm 07-2012
  • Bien sûr cette liste n’est pas exhaustive. Chacun peut trouver d’autres méthodes pour réaliser la maquette de foil qui servira à faire le moule. En cherchant sur les sites d’aéromodélisme, il est possible de trouver de nouvelles idées (découpage de mousse de polystyrène au fil chaud par exemple).

2.2 – La stratification du moule

Comme je l’ai déjà indiqué, il me semble plus facile de faire 2 demi-maquettes (extrados et intrados), le plan de coupe étant donc le plan de joint du moule.

Il faudra donc fixer (collage) chaque demi maquette sur une surface parfaitement plane et bien rigide avant de commencer la stratification du moule. Pour ma part, j’ai utilisé une plaque de verre de 4mm d’épaisseur, elle-même posée sur une table bien plane.

Si l’on ne veut pas avoir, par la suite, de problèmes de démoulage, il faut à ce stade se pencher sérieusement sur le problème de l’agent de démoulage. Je pense que dans cette phase il n’est pas recommandé d’improviser. J’ai acheté de la cire de démoulage et j’ai suivi rigoureusement le mode d’emploi. (enduction de cire avec une petite éponge, séchage, polissage avec un tissu bien sec, puis ré-enduction, re-séchage et re-polissage).

Il existe aussi un produit de démoulage très performant, l’alcool polyvinylique, qui se passe au pinceau et qui sèche assez rapidement. Toutefois, comme la cire, il faut être certain d’en disposer de façon homogène et sans oublier le moindre mm² ! De plus, le rendu est inférieur, l’aspect de la pièce finie est mat et les traces de pinceau (application) peuvent être visibles.

La réalisation du moule se fera de préférence avec deux matières. D’abord un enduit chargé qui constituera la matière de l’intérieur du moule, ou un gel-coat, puis la stratification elle-même constituée de fibres (tissée ou sous forme de mat) enduites de résine. Je ne parlerai pas en détail de cette stratification qui peut se faire à l’air libre ou sous vide, par la méthode « humide » ou « prépreg » etc…

En revanche, il me parait important de préciser qu’il faut que ce moule soit particulièrement rigide et renforcé afin d’éviter à tout prix qu’il ne se vrille. Ceci est particulièrement vrai pour la résine polyester qui a nettement tendance à se rétracter pendant la polymérisation. N’hésitez donc pas à intégrer des renforts longitudinaux et transversaux en bois ou plutôt en métal (tubes, cornières).

Il va falloir enfin finaliser le moule en ajustant et en fixant les deux parties. Pour ma part, j’ai utilisé des boulons, écrous et rondelles au niveau du joint de moule. Il est évident qu’avant de fabriquer ces fixations, il faudra être sûr du parfait positionnement des deux parties du moule. En plus de ces dispositifs de serrage, il faut donc prévoir un système de calage ou un très bon ajustement des perçages (et une bonne épaisseur de matière !).

Deux remarques :

a) Je ne vous apprendrai rien en vous disant que parmi les profils classiques on peut distinguer trois types d’intrados :

  • L’intrados convexe
  • L’intrados plat
  • L’intrados concave (ou profil creux)
Types de profils - schéma G Delerm 07-2012
Types de profils – schéma G Delerm 07-2012

Si les deux premiers types sont assez faciles à réaliser (surtout l’intrados plat pour lequel il suffira de « refermer » le moule avec une simple surface plane), le profil creux, lui, posera quelques problèmes à cause de la zone indiquée sur le croquis. Nous reparlerons peut-être des solutions possibles dans ce cas (maquette en une seule partie).

b) Au moment de la stratification du moule, il faut penser à l’incompatibilité de certains matériaux. En particulier la résine polyester (à cause de son solvant, le styrène monomère) est incompatible avec le polystyrène, qu’il soit expansé ou extrudé. Il est alors nécessaire soit d’isoler le polystyrène de la résine ou d’utiliser de la résine époxydique.

 2.3 – La réalisation finale du foil

J’aurais tendance à simplement dire ici : « stratifier le foil dans le moule, laisser polymériser, ouvrir le moule … le foil est prêt ». En fait il y a plusieurs possibilités et quelques écueils à éviter. J’ai utilisé une méthode « monobloc » pour obtenir un foil massif.

  • Découper du tissu de verre (10 couches de 200 g au m² de chaque coté)
  • Stratifier ces couches à la résine polyester
  • Compléter le cœur avec un mélange résine- mat de verre (style « choucroute »)
  • Refermer le moule et bien boulonner le tout en essayant d’éviter le maximum de bulles (ça bave partout, c’est normal).

Cette méthode est loin d’être la meilleure (présences de bulles, quantité de résine beaucoup trop importante par rapport à la fibre). Dans cette méthode qui met en œuvre simultanément une quantité assez importante de résine, il faudra régler le dosage de catalyseur afin que la résine ne chauffe pas trop pendant la polymérisation.

Moule foil Foilboard fermé - Photo G Delerm
Moule foil Foilboard fermé – Photo G Delerm

 

Moule et foil Foilboard ouvert - Photo G Delerm
Moule et foil Foilboard ouvert – Photo G Delerm

Toujours dans le genre monobloc il existe une technique beaucoup plus « propre » et évitant toutes présences de bulles. Il s’agit du moulage RTV qui en revanche demande la présence d’une ou 2 pompes à vide, un moule un peu plus sophistiqué et un dosage très précis du temps de polymérisation.

Schéma process RTV - schéma G Delerm 07-2012
Schéma process RTV – schéma G Delerm 07-2012

Il existe d’autres méthodes que je n’ai pas essayées. Stratification de la peau en laissant le cœur vide, cœur en mousse de polyuréthane etc. Dans ces cas là, comme déjà indiqué pour la méthode « directe » il faudra penser à renforcer le cœur pour éviter l’écrasement. Et puis, ne pas oublier que la force d’expansion d’une mousse peut être très importante et difficile à maîtriser…

Dans tous les cas, penser à l’agent de démoulage !

3 – Autres matériaux et autres méthodes

La meilleure technique est bien sûr celle que l’on connait le mieux et pour laquelle on possède les meilleurs outils. Il n’est absolument pas ridicule de réaliser un foil en plaque de duralumin lorsqu’on a, à sa disposition le matériau, les cintreuses et les systèmes de soudure à l’arc ou plasma sous argon.

Je laisse ici de la place  😉 pour que chacun nous donne sa méthode.

Conclusion

Bon travail et tenez-nous au courant de vos travaux !